Topological Materials: Monopoles, Surface States and More

Binghai Yan

Weizmann Institute of Science, Israel

Abstract

The classification and discovery of topological materials have attracted intensive research attention in the past decade. After explaining basic concepts of the topological states, I will introduce our most recent progress on novel topological states discovered in a well-known family of materials, transition metal dichalcogenides. Beyond surface states, the topology also brings exotic transport phenomena, such as a nonlinear version of the Hall effect (verified by recent experiments), but without breaking the time-reversal symmetry.

References

[1] Sun, Y., S.-C. Wu, M. N. Ali, C. Felser, and B. Yan. *Prediction of Weyl semimetal in orthorhombic MoTe*₂, Phys. Rev. B 92(16), 161107 (R) (2015).

[2] J. Jiang et al. Signature of type-II Weyl semimetal phase in MoTe₂, Nat. Commun. 8, 13973 (2017).

[3] Y. Zhang, Y. Sun, and B. Yan, *Berry curvature dipole in Weyl semimetal materials: An ab initio study*, Phys. Rev. B 97, 041101 (R) (2018).

[4] Y. Zhang, et al. *Electrically tuneable nonlinear anomalous Hall effect in two-dimensional transition-metal dichalcogenides WTe2 and MoTe2*, 2D Mater. 5, 044001 (2018).

[5] Z. Wang, et al. *Higher-Order Topology, Monopole Nodal Lines, and the Origin of Large Fermi Arcs in Transition Metal Dichalcogenides XTe2 (X= Mo, W).* arXiv:1806.11116 (2018).